

Versatile and Rugged Lead-Based Industrial Charger Series

- California Energy Compliant
- Rugged and reliable design
- Capable of direct charge or BMS
- Power phase-back with temperature
- Factory Settable voltage/current
- Transient protected input/output
- Active I/O reverse polarity protection
- Informative LED display
- · Optional wireless/digital interface
- Relay and discrete I/O signals
- Over temp protection with auto reset
- Overcurrent / overvoltage protected
- Four year warranty

Description

The R-series is an environmentally robust and sophisticated battery chargers with models supporting Leadbased batteries. With a wide operating temperature range (-25°C to 65°C), a rugged mechanical design, and AC or DC input power options, this product is well suited for high end industrial applications. The charger complies with the California Energy Commission guidelines and with UL/CSA specifications.

The enclosure is sealed and impervious to pollutants, The unique mechanical design provides extremely high power density and environmental reliability.

The R-series optional external communications can be programmed with user specific firmware. The product may be ordered with an optional user defined set of discrete I/O signals, a wireless option, an RS-232 or

RS-485, CAN or other interfaces.

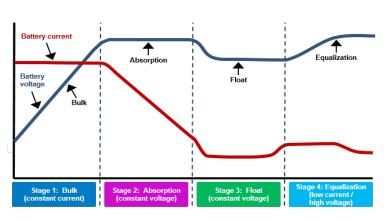
An informative LED display indicates state of charge, input power present, battery voltage and current, fault conditions and proper battery connection are standard. The R-series charger precisely controls the charging algorithm to insure a complete recharge while prolonging battery life. The charger can be programmed for direct pack charging or with a BMS (battery management system) equipped pack.

The R-series can be connected indefinitely making it ideal for remote and standby applications. It is mountable in any orientation and can be ordered with input and output power connectors per customer specification. Customized charging algorithms, power sequencing and control/monitoring options are available upon request.

AC input model specifications

PARAMETER	DESCRIPTION / CONDITIONS
AC input voltage range	3 input ranges covering 85 VAC - 240 VAC
Input AC amps (max)	Measured at 85 VAC / 90 watts output: 1.5 Arms
AC input configuration	AC input: line, neutral, chassis ground
Connector	Nema 5-15P

DC input model specifications


PARAMETER	DESCRIPTION / CONDITIONS
DC input voltage range	8 input ranges covering 11 VDC to 500 VDC
Input DC amps (max)	Measured at 48 VDC / 90 watts output: 2.6 A
DC input configuration	DC input: DC Power, DC Return, Chassis ground
Connector	Ring terminals or user defined

1860 Eastman Unit 109, Ventura, CA 93003 Phone: (866) 482-7930 Fax: (805) 650-7936 www.chargetek.com

Rev C 6/3/17 Page 1 of 6

R-Series Model Specific Specifications

Four Stage Lead-based battery charging curve

Charging algorithm: Supplies constant current I_{mx} to battery until absorption voltage is reached (V_{FSTERM}). Transition to absorption mode follows and regulates battery voltage at V_{FSTERM} until current decreases to I_{ABTERM} . Float mode follows and regulates battery voltage at V_{FLOAT} . At the user's discretion, an equalization mode can be initiated. The equalization voltage V_{EQ} is approximately 2.5V/cell and battery current is limited. For more information, please refer to www.chargetek.com/images/pdfs/equal.pdf

Standard LED indicators

PARAMETER	GREEN	RED/GREEN	RED	RED on/off	GREEN on/off
state of charge	Complete	Top Off	Constant Current	-	-
battery voltage (volts)	< 75% of V _{FSTERM}	75% to 85% of $V_{\mbox{\tiny FSTERM}}$	85% to 95% of $V_{\scriptscriptstyle \rm FSTERM}$	$> 95\%$ of $V_{\scriptscriptstyle \rm FSTERM}$	-
battery current (amps)	< 10% of I _{max}	10% to 30% of $I_{\rm max}$	30% to 90% I _{max}	> 90% of I _{max}	-
fault indicator	Polarity OK	Short/Reversed	Battery < 2.7V/cell	Over Voltage	Over Temperature
input power	Power Good	-	-	-	-

R-Series Common Specifications

CHARGING PARAMETERS	DESCRIPTION
Absorption transition time-out	10 hours following 85% of V _{FSTERM} (factory settable upon request)
Max charging time	Terminate if > I _{max} /3 > 15 hours (factory settable upon request)
Overvoltage protection	Maximum Charging Voltage + 1.0V
Output noise and ripple (PARD)	<150mV, 100MHz BW
Regulation	± 0.5%
Efficiency	Measured at max power, varies from 80% to 92% depending on model

1860 Eastman Unit 109, Ventura, CA 93003 Phone: (866) 482-7930 Fax: (805) 650-7936 www.chargetek.com

Rev C 6/3/17 Page 2 of 6

R-Series Charging Specifications

6V batte	ry bank (3S)		
PARAMETE	R DESCRIPTION / CONDITIONS	VALUE	UNITS
V _{FSTERM}	Fast charge transition voltage	7.3 ±0.1	VDC
V _{FLOAT}	Float voltage, I _{OUT} < I _{FS} , 25°C	6.8 ±0.1	VDC
l _{max}	Maximum charging current	20.0 ±2.0	Amps
I _{ABTERM}	Absorption transition current	1.0 ±0.1	Amps
V _{EQ}	Equalization voltage @ < 1Amp	7.8 ±0.1	volts
I _{SBY}	Max standby current, AC off	1.0	ma

12V batte	ry bank (6S)		
PARAMETER	DESCRIPTION / CONDITIONS	VALUE	UNITS
V _{FSTERM}	Fast charge transition voltage	14.6 ±0.1	VDC
V_{FLOAT}	Float voltage, I _{OUT} < I _{FS} , 25°C	13.6 ±0.1	VDC
max	Maximum charging current	10.0 ±1.0	Amps
ABTERM	Absorption transition current	1.0 ±0.1	Amps
V_{EQ}	Equalization voltage @ < 1Amp	15.5±0.1	volts
I _{SBY}	Max standby current, AC off	1.0	ma

18V battery bank (9S)				
PARAMETER	DESCRIPTION / CONDITIONS	VALUE	UNITS	
V _{FSTERM}	Fast charge transition voltage	21.9 ±0.1	VDC	
V _{FLOAT}	Float voltage, I _{OUT} < I _{FS} , 25°C	20.4 ±0.1	VDC	
I _{max}	Maximum charging current	8.0 ±1.0	Amps	
ABTERM	Absorption transition current	1.0 ±0.1	Amps	
V _{EQ}	Equalization voltage @ < 1Amp	23.3 ±0.1	volts	
I _{SBY}	Max standby current, AC off	1.3	ma	

24V batter	y bank (12S)		
PARAMETER	DESCRIPTION / CONDITIONS	VALUE	UNITS
V _{FSTERM}	Fast charge transition voltage	29.2 ±0.1	VDC
V _{FLOAT}	Float voltage, I _{OUT} < I _{FS} , 25°C	27.2 ±0.1	VDC
l _{max}	Maximum charging current	6.0 ±0.1	Amps
ABTERM	Absorption transition current	1.0 ±0.1	Amps
V _{EQ}	Equalization voltage, <1A	31.0±0.1	volts
I _{SBY}	Max standby current, AC off	1.5	ma

36V batter	y bank (18S)		
PARAMETER	DESCRIPTION / CONDITIONS	VALUE	UNITS
V _{FSTERM}	Fast charge transition voltage	43.8 ±0.2	VDC
V _{FLOAT}	Float voltage, I _{OUT} < I _{FS} , 25°C	13.5 ±0.2	VDC
l _{max}	Maximum charging current	4.0 ±1.0	Amps
I _{ABTERM}	Absorption transition current	0.5 ±0.1	Amps
V _{EQ}	Equalization voltage @ < 1Amp	46.5 ±0.2	volts
I _{SBY}	Max standby current, AC off	1.8	ma

48V batter	y bank (24S)		
PARAMETER	DESCRIPTION / CONDITIONS	VALUE	UNITS
V _{FSTERM}	Fast charge transition voltage	58.4 ±0.2	VDC
V _{FLOAT}	Float voltage, I _{OUT} < I _{FS} , 25°C	54.4 ±0.2	VDC
max	Maximum charging current	3.0 ±1.0	Amps
ABTERM	Absorption transition current	0.5 ±0.1	Amps
V _{EQ}	Equalization voltage @ < 1Amp	62.0 ±0.2	volts
SBY	Max standby current, AC off	1.	ma

60V batter	y bank (30S)		
PARAMETER	DESCRIPTION / CONDITIONS	VALUE	UNITS
V _{FSTERM}	Fast charge transition voltage	73.0 ±0.2	VDC
V _{FLOAT}	Float voltage, I _{OUT} < I _{FS} , 25°C	68.0±0.2	VDC
max	Maximum charging current	2.5 ±0.1	Amps
ABTERM	Absorption transition current	0.5 ±0.1	Amps
V_{EQ}	Equalization voltage, <1A	77.5 ±0.2	volts
SBY	Max standby current, AC off	2.0	ma

72V battery bank (36S)				
PARAMETER	DESCRIPTION / CONDITIONS	VALUE	UNITS	
V _{FSTERM}	Fast charge transition voltage	87.6 ±0.3	VDC	
V _{FLOAT}	Float voltage, I _{OUT} < I _{FS} , 25°C	81.6 ±0.3	VDC	
max	Maximum charging current	2.0 ±0.1	Amps	
ABTERM	Absorption transition current	0.5 ±0.1	Amps	
V _{EQ}	Equalization voltage, <1A	93.0 ±0.3	volts	
I _{SBY}	Max standby current, AC off	2.0	ma	

R-Series Lead-Based ChargerOrdering Guide, p/n GbR-xyz-r

P/N Field	Definition	Options	De	Description					
b	Input Power	A - AC input E - DC input	See description of field z in the part number for input voltage range options.						
х	Number of Series Cells Defines the output voltage.	For Lead-based chargers the options are: 3S, 6S, 9S, 12S, 18S, 24S, 30S, 36S and 150S	This option determines the Nominal Charging Voltage for Lead- based batteries. For Lead-based chargers the nominal output voltage is the number of cells multiplied by the nominal cell voltage of 2.0V. For example, option 12S would specify a 24V charger, (12 times 2.0V/cell = 24V)						
У	Maximum Charging Current	Maximum Charging Current in amps. For standard model the maximum charging current is determined by the number of Series Cells, see tables to the right. If a <i>lower</i> maximum output current is desired then it is specified in this field as amps. For example a standard AC input Lead-based 6S model is ordered as GAR-S610-1. If a charger with a maximum output current of 8 amps is needed the order number would be GAR-S68-1.			Maximum Char of Series Cells 6V(3S) 12V(6S) 18V(9S) 24V(12S) 36V(18S) 48V(24S) 60V(30S) 72V(36S)		Current vs. is Cells Max. Curre 20 Amp 10 Amp 8 Amps 4 Amps 3 Amps 2.5 Amp		
		For AC input chargers, three options; 01, 02, and 03 are available		Option Input Voltage Option Input Voltage					/oltage
		For DC input chargers, eight options; 07, 08, 09, 10, 11, 12, 13, and 14 are available.		<u> </u>	Range	,-	·	Range	
				01	85 - 140 VAC		09	30 - 5	0 VDC
				02	180 - 300 VA		10	38 - 7	5 VDC
				03	85 - 300 VAC		11	72 - 140 VDC	
				07	11 - 20 VDC		12	100 - 2	00 VDC
				08	18 - 36 VDC		13	150 - 300 VDC	
							14	250 - 5	00 VDC
r	Options	List of Available Options, listed separated by '-' characters, some options are mutually exclusive. An: External Interface Rxy: Internal Relay	An: External Interface, choose n as follows: 0 - RS-232, 1 - RS-485, 2 - Wired Ethernet, 3 - CAN, 5 - Wireless Ethernet, 99 - Special Rxy: Internal Relay, there can be up to 4 internal relays x = relay configuration; O for NO, C for NC y = function; 1 - Over voltage, 2 - Charging, 3 - Over temperature, 4 - AC On						

Example: GAR-S610-01-RA1-RC3-RO4 specifies a Lead based AC input(A) charger with maximum output voltage set to charge 6-series cells, 12V (S6) at a maximum current of 10 amps (10) and the AC input range is 85-140 VAC (01). The chargers has options for an RS-485 interface (RA1) with two relays, NC Over Temperature (RC3) and NO AC On (RO4)

Rev C 6/3/17 Page 4 of 6

Certifications and Compliance (model dependant - consult factory)

	·	
а	UL CSA	
b	CE mark	
С	California Energy Compliant	
d	RF emissions: US FCC Part 15 Class A, CISPR 22:2009	
е	IEC 555, power factor	
f	IEC 61000-4-5; Class 4 Severity Level, Surge	
g	IEEE C2-2012 National Electrical Safety Code	
h	NFPA 70-2014 National Electric Code	
i	IEC 60950 Safety of IT Equipment; Pollution Degree 2	
j	WEEE and Restriction of Hazardous Substances (ROHS) Directives 2002/95/EC	
k	T-Mark	

Workmanship specifications

IPC-610	Acceptability of electronic assemblies IPC J-STD-006 Requirements for electronic grade solder alloys and fluxed and non-fluxed solid solders for electronic soldering applications
IPC-2221	FR4, 130C 94V-0
IPC/WHMA-A-620	Requirements and acceptance of wiring and cabling

Mechanical specifications

PARAMETER	(units are in inches and pounds)	
Dimensions	6.0 (L) x 4.0 (W) x 2.0 (H)	
Chassis material	Aluminum	
Chassis finish	Black anodized	
Clearance	12 inches all sides	
Mounting	#6 screws at six locations	
Output connector	Terminal lugs or user defined	
Weight	Three pounds	
Optional connector when applicable	Please consult factory	
Forced Air Rating	Please consult factory	

Environmental specifications

PARAMETER	DESCRIPTION / CONDITIONS		
Operating environment	Indoor/outdoor - IP67 -not submersible		
Storage temp.	-40°C to +80°C		
Operating temp.	-20°C to +60°C at maximum output over entire DC voltage range		
Humidity	0°C to +95°C relative humidity (non-condensing)		
Operational altitude	10,000 feet		
Vibration	MIL-STD-810 or IEC60068-2-6 and -2-64 as applicable		
Shock	MIL-STD-810 or IEC60068-2-27 as applicable		
Isolation	Input - chassis: 2KVDC Input - output: 2KVDC Output - chassis: 500VDC		
DC leakage current	Input - chassis: < 200uA at 2KVDC Input - output: < 100uA at 2KVDC		
AC leakage current	< 3.5mA at 264VAC, 60Hz		

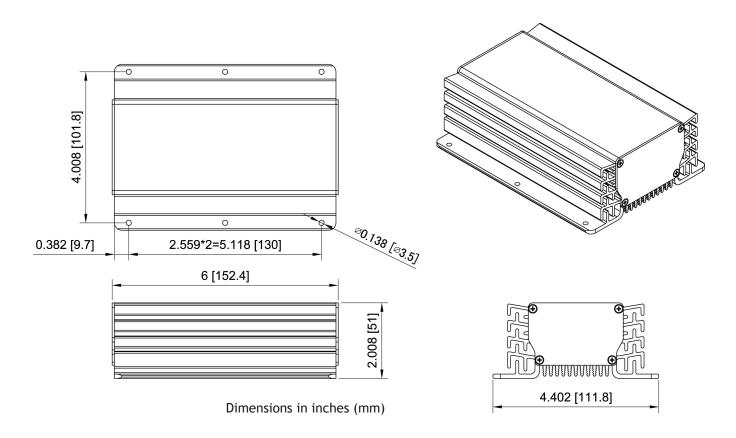
1860 Eastman Unit 109, Ventura, CA 93003 Phone: (866) 482-7930 Fax: (805) 650-7936 www.chargetek.com

Rev C 6/3/17 Page 5 of 6

Control and Monitor Interfaces

Standard Control Functions:

- On/Off
- Terminating Voltage
- Current Limiting
- Termination Current
- Pre-charge Current


Standard Monitoring Functions:

- Charger State
- Voltage
- Current
- Control Settings
- Temperature
- Status, Warnings, Errors

Standard Monitoring Functions:

- Charger State
- Errors

Outline and mounting

1860 Eastman Unit 109, Ventura, CA 93003 Phone: (866) 482-7930 Fax: (805) 650-7936 www.chargetek.com

Rev C 6/3/17 Page 6 of 6